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The behaviour of the solution of the boundary value problem for a pseudo- 
differential equation (PDE), Green's function of this problem, and also 
some of their local and global characteristics, during variation of the 
domain is investigated. Formulas are proposed that enable the solution 
of a broad class of PDE in a domain to be expressed in terms of the 
solution in the near domain. Local characteristics of the solution are 
expressed in terms of the local characteristics of the solution in the 
near domain. A double asymptotic formof Green's functionforboth arguments 
tending to the domain boundary occurs in the variation formula. The 
variation of this double asymptotic form as the domain varies is expressed 
in terms of this same asymptotic form. The system of variation formulas 
obtained is closed. It enables the PDE solution in the domain to be 
reduced to the solution of an ordinary differential equation in functional 
space. The local characteristics of the solution can also be found by 
this method without calculating the solution itself. If there is 
sufficient symmetry in the initial operator, then conservation laws in 
the Noether sense are obtained for its Green's function and its asymptotic 
form. The behaviour of the quantities under investigation is studied 
under inversion. 

The investigation of variations of the solutions of problems for the 
variation of the domainoccursinthepaperbyHadamard /l/, who studied 
the variation in confsnnal mapping and obtained a formula similar to 
(1.4). The formula for the variation of the solution of the boundary 
value problem for an elliptic differential equation is obtained in /2/. 
Variation formulas for the case of the operator of the problem about a 
crack and a circular domain are obtained in /3, 4/. The Irwin formula 
/S/ is obtained from formulas (1.41 and (1.21) by substitution. 

1. An important special case for which variation formulas will be obtained is the prob 
of a crack with the operator 

lex 

Au (II, 12) = A dy, dy, u (Yl, Y¶l 

(I1 - YlP -I- (2% - l/d’ 
w 

where S is the domain occupied by a plane normal separation crack in an unbounded body. It is 
knoh,n /3/ that the crack opening u(tl, r& is related tc the density f(zl.r~) of the normal 
discontinuing forces of the PDE 

f (I~, rz) = 2 (1 - 9) E-IAu fq, z2) (1.2) 
with the boundary condition U IAS = n. 

It is well-known that the solution of the PDE (1.2) has the asymptotic form u (%I 22) - 

cs (E) s" as (zlr r&-b f rr 8.Y if (I~. .T& ES moreover, Au (I,. zJ- N(E).+, where (x1, x2)@ S. 
Here s= p(r,aS), -v(E) is the stress intensity factor. For (z,,r*)~S the function AL((.z~,z~) 
describes the normal stress distribution on the continuation of the crack. Solutions of the 
PDE of the problem of a punch with a sharp tip /6/ have analogous properties. 

In the general case let A (r,g) be a generalized function in R" x R", and S a domain in 
R". Let us consider the operator A in the domain S whose kernel is the function A (1,~) 
bounded in S x S, i.e., 

A:j(r)wAfb)= A&v Y)f(y)dy 
5 

We assume that for a certain number af R a unique solution of the equation Au = f 
exists for sufficiently smooth as and f, where u(x) has the asymptotic fom N'(t,,}P/I'(a f 1) 
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for a certain function N' as Z-+ZIJE as, while s = p(t,aS). 
We introduce Green's function G(t, y) and the influence function 

E(x, Y)-- s .4(r, z)G(s, YW+~@, Y) 
liR 

where G@,y) is assumed to be zero for z@ S or y@$S, For the problem of a crack, the 
function E(z,y) yields a normal stress at the point t on the crack continuation, and for 
a single concentration opening load applied at the point y the function G&y) yields the 
opening of a crack at the point I under the same load. 

Formulas 
the following 
smooth A!3 

expressing the variation of Green's function for the operators A that possess 
properties: A is a selfadjoint pseudodifferential operator, for sufficiently 

(1.3) 

will be presented here. 
The formulas for the operator of the problem about a crack are derived in Sects.Z-5. 

The notation without primes is used there and the coefficients in the asymptotic forms are not 
normalized to the r-function. In general, the proofs will be carried out without substantial 
changes. 

We shall give the change in the domain as follows: let a family of domains S,, So = S be 
given, where t is a parameter which is not necessarilyrealtime. For the point ZECYS let ~1 
be the point of intersection of 8S, with the perpendicular to A$ at the point Z, and let 
w(z) be the velocity of motion of z, outside the domain. The function ur(o),zf: &S will also 
characterize the rate of change of the domain. Let Gf (I, rr)+ g,' (~1, Y) and e,' ($9 Y)? 2, YE S,, 
ZE as0 denote the functions being investigated for the domain S,. 

In this case 

;G&, Y)/+o= 1 dz w (z) e’ (z, y) g’ 6, s) W) 
0s 

and e' (I. y)- 6V,(~)sO-l/r (a + 1) for y E S, y -+ ye, E as, where e’ (2, y) and S,(r) are considered 
as generalized functions on M, s = p (y, as). 

If the condition E(t, y)- e'(r, yo) SbX {a -j- if is satisfied as y+ yof as, y E S, ther, 

+ Et (2% Y) IlnO - 5 dz L(’ (z) e’(z, z) c’ (2, y) 0.5) 
8s 

We assume that R (2,~) depends oniy on 5-y. We examine the next term in the asymptotic 

form for e' (s - p): 

e' (I, y) - S,(r) Sa-r!r (a) + s' (3, y,) Fir (a + I) 

y - YE 3s 

In this case 

+ g,'(f,r Y&O* jdz (~‘(2) - b,, n.1 wC4)g’ 0, y) ~‘(2, 4 - (1.6) 

h Vy) 8’ @t Y) U’ (4 

ad if the condition formulated before (1.5) is satisfied, then 

-+*% YJ1t-P - 
d 

dz(tu(z)- (n,, nu)w(y))eo(~, z)u’@, y) - 0.7) 

(nv* ww eOk Yf z@ 64 

where np is the external normal to 8.S at the point qEaS. 
Moreover, all the subsequent terms of the asymptotic form G(z,y) are evaluated in terms 

Of g’(r,g) and E’(I. y) as z-+ XOE 6%. For instance, if 

G (r, y) - g'(zo, Y) .+r (a -!- f) + giu (~0, Y) **l/r (0 4 2) (1.8) 

~-+~~~as 



735 

where I = p(r, as), then 

and for the vector 1 tangent to 8s at z 

(4 $)g’ lx, Y) + (4 +) g’ (G Y) + dz 6 nz)g’ (2, Y)C' (2, 4 = 0 (1.10) 

If A (I, y) depends only on the distance between I and y, then in addition to (l.lO), 
several conservations laws are still satisfied in the Noether sense. Let u~(z-Y), and for 
n > 3 let b J_ a, (t - y). 

Then 

S dz((z -%I-y)(nz, a)- (z-2. a)(%, Z-Y)) x (Ml) 
as 

g’ (2, Y) a’ (2, 4 + I = - y I* (a, WY) g’ (2, Y) = 0 

s 
h((z -_yt b)h a)- (2 - y, a) (n,, b)) g’(z, Y) s’ (2, 4 = 0 

8 
(1.12) 

If A (z, y) is a homogeneous function of t-Y of degree of homogeneity fi, then fi = --II - 
La and 

@n-l- B)g’(r, Y) + (Y-Z, $)g’(z, Y) + dz(z--, n,)g’(z, y)e’(z, z)=O (1.13) 

For an arbitrary function A (z,Y) satisfying the assumptions (1.3), a closed formula 
is not obtained successfully for the variation, and only the following relationship can be 
written: 

&g,'(r,, y)I~-~$g(~)(r,.y)w(r)= dzm(s)g'(z, Y)s'(s, r) 
% 8 

(1.14) 

If A (r,y) satisfies the relationships and the homogeneity, and the invariance relative 
to rotation, then it has the form 1 I - gjb and still possesses certain properties of invariance 
relative to inversion. More accurately, foraninversion with respect to a circle with centre 
at zero and a radius R, if r1 denotes the image of the point I and Slof the domain S, then 

Gs (2, y) = R-= I.2 I’“-” I Y I”-‘%, (lie YJ (1.15) 

gs’ (2, y) = zF= 15 I* I Y f”-“S;gi (Iit Yt) (i.16) 

where the subscripts on the functions G and g' denote the domains for which they are evaluated. 
In this case the following conservation laws hold for any vector a: 

(2(Y- =I a)(Y--)-II --II% Wy)g'(r, Y) -+ 

(Zn+B)(Y-rz, a)&?'+* Y)' 

S dz (2 (z -z, 4)(2-q nJ- I 2 - z 1’ (a, 4)) g’ (2, Y) c’ (2, 4 
0s 

(1.17) 

In all (n+ I)(n + 2)/2 identities (inclusing (1.1411, which equals the dimensionality of 
the conformal group of n-space, are obtained for the function g. Moreover, a variation formula 
for E' can be obtained for such an operator A, which we write for n = 2 for convenience 

& et’ h it) I+o = 
s 

dz 1~ (4 --wWh, &J-@-Y, nab)- (1.18) 

nyw(~))(t--, n~)l~-yI* - (2 - Y* I# (4 - l,w (Y)) x 

(2 - 2, I,) 12 - y I-*] e’(i, 2) e’ (2, y) - n (I - y, n,w (z) - 

nyw (Y)) I = - Y 1-Q @, Y) 

(for n> 2 the third component in the square brackets will have a more complex form). Here 

1, is a unit vector tangent to 8s at the point g. Only the transformation properties of 

a' (r* Y) for parallel transfers, rotations, and extensions are used in this formula. For P (z) 
of the form (t, n,), (z. I,), (a, n,), where a E R', four conservation laws, analogous to (l.lO)- 
(1.131, are obtained from (1.18) for e' (two of them will be linearly independent). Using the 
identity 

es' (2, Y) = Rm I 2 I* 1 Y /-“es,’ kit yt) - a (nvq y) I Y I-*6 (I, y) (1.19) 
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which is analogous to (1.15) and (1.16), conservation laws for E' can be written that are 
analogous to (1.17) for g'. 

The formulas 

N’ (f, Z) = S dz e’ (z, x) f (,x) 
I3 

dz(w(z)-(n,, n,)w(r))r(f, Z)E'(z, 5)-j- 

(1.20) 

(1.21) 

(1.22) 

are valid for variations of the solution of the equation Au =f (A satisfies (1.31). 
Here N' is the local characteristic of the solution u on 8s u(r)- N'(,f,z,)@!I'(cz + 1), s = 

p (r, as), x-+ 29 E as. Formula (1.22) holds if A (2,~) depends only on t - y. 
These formulas can be used to evaluate N'(f,t) for a polynomial or lumped load f(z) or 

a load f(z) in the form of an exponential polynomial in an arbitrary domain S if the solution 
of this problem is known in some, say circular, domain S' as is also the function e’(s, y) for 
this domain. Indeed, we include the domains S and S' in the family of domains S, with S,=S', 
s, =s. Formulas (1.18) and (1.6) yield a system of two ordinary first-order differential 
equations for q’ (2, y) and e’ (2, y). while (1.18) and (1.22) yield the very same for ~'(r,y) 
and N’ (exp (a, e), r). 

For a polynomial load p(r) formulas (1.18) and (1.22) yield a system of k+- 1 ordinary 
first-order differential equations for Et/(x, y) and ?y' (Pi.z),i = i, . . ..k. where P, = P and 
P,. . . ., P* are all non-zero partial derivatives of the polynomial P. Note that for A (z, y) = 
Is--yip the derivatives g'(L5.y)wit.h respect to y in (1.6) can be eliminated by using (l.lOi, 
(1.11) and (1.13). 

By using (1.20) even the solution u of the PDE Au =f can be evaluated analogously. 
We assume that a dependence cf the form 

U' (x) = F (A' (P, r)) (1.23) 
for the growth rate of thecrackat the point 2 on the stress intensity factor at I exists for 
the given material under the conditions of the problem of a crack. In this case (1.231, Cl.2 
(1.6) and (1.18) can be understood as the equations for the evolution of the crack with time, 
and similarly (1.23), (1.22), (1.18) for the polynomial load. 

For domains of the "half-plane" and "circle" form and the operator of the problem abo,ut 
a crack, forrrulas are obtained for e'(z, y) and E'(z, y) from the formulas in Sect.6 taking 
accout cf the relationships 

e' = I'Ze. e' = en 2 

2. We will prove (l-4! fortheGreen's function variations. For simplicity, the proof 
will be carried out for the case of the operator (1.1) of the problem of a crack. 

The crux of the method is the utilization of a variable curvilinear coordinate syste: in 
which as is described by an equation independent of t. . In this cocrainate system, the 
operator depends on t and application cf the usual perturbation theory in the form Xn+l= X,- 
X, (B - x,-q X, is possible, where Xb are the next approximations to the operator B-l. If X, 
has a first order of closeness to B-l, then X,,I wili have a second order of closeness. Since 
there is a small factor in the second term, then Z= X-Y((B-X-x)X has a second order of 
closeness to B-l when X and Y have a first order of closeness. 

Let V(Z) be a vector field in aplane, and let h,(r) be the solutionof the equation ah, (t)/ 
itr = pi (h, (I)), h, (~1 = Z. Let 9,= 4 (91. We determine the action of h, on the function and on the 
density by means of >-he formulas h,, f (ZT: = I (i._, (z)i, h,, (1 (11 dz)= f (h_, (I)) d (h_, (~1). By the action Of two 
variables on the function the superscript on the 6,. will denote the variable on which I,, acts. 

We t&e ht,sht,vG{r,y)dy as X (for convenience we replace G (z.& by the density G(z, y) dyl. 

We take G(r.& dy as Y. The operator 8, will be the limitation of the operator A in the domain 

Sf. Then 

h&Z, (1. y’~ = h&G (I, y) - 5 C (I, :) d: [j .4 (:, 4) d&S (9. y) - 

dzb. + h;,E (:, ~1) = h:& (I* II) - [ dqfi,,h;@ (9, Y) + 
_ 

i dq& 19. I) h&G (g, y) i G (f, u? - f d& (I, 11 h;,# (it yf 

It can be assumed that u(z)= r(y) = 0. Then 

G,(z, r/i = Z,(x, y) -79 (IJ = G (2, Yi - {d9E (9. r)h&:G (9, Y)- @:,E (2% V) G (x, ;) -r 9 i') 
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The integrands are non-zero only in a small neighbourhood of dS. We introduce the co- 
0rdinates.i and n, where 1 is the base of a perpendicular dropped from a point to 8.9 and n 
is the coordinate of a point on this perpendicular measured outside from 8s. Since the function 

=(t) from Sect.1 is in agreement with the n-component of the field ~(s),r~i?S, the first 
integral is 

*B)i-NO 

s 
dt 

s dn (r (I, =) .-"I+ o (n-“‘)) (g (I, z) (tr (0 - n)"')+ 
kW,W)>i) Q 

o((t~ (Z)- n)"*) = 1+ *(L=)i3V. H-i-oft), r>o 

Evaluating the second integral analogously, we obtain (1.4). Formula (1.S) is obtained 
by applying the operator A to both sides of (1.4). 

3. Differentiating the asymptotic form (1.8) of the function G(s,p) as +-s,~dS~, we 
obtain 

-&G, (& v) I 1-o = &(r)g(t, y)s_'1' -I- &It (+ v) ir,+ +"‘(fr)g@e* u,] 2'. + da'b) 

Comparing with (1.4)‘ we obtain that I (1.~) = n-$*(z) + 0 (I~*) and 

where c is the coefficient of 8 't* in the asymptotic form of the function e. 
If the family of domains S, is obtained from S by translation of the normal bS to the 

vector n, at the point 5. then w(s)= (nr, nx). If meanwhile A (tl,y) depends only on r-u, then 
& (*:, u) = g (2, I - 4). Comparing theis expresssion with (3.11, we obtain (1.14), i.e., 

We deduce (1.6) from the last two formulas, and formula (1.7) is also derived analogously. 
4. Iftheoperatorisinvariantundera transformation of the plane &then G,s(@(+), Q,(y))= 

Ga (+, u), etc. Consequently, if the operator A is invariant under the group of diffeomorphisms 
h, generated by the vector field V, then If (+, u) = c (kc (=;L k1 (v)), where St = h$. Hence dg, (II, y)/& 
is calculated and by comparing this expression with (1.6), we obtain a conservation law for 8. 
Analogous reasoning can be performed even in the case when the operator is multiplied by a 
constant in the transformation of the plane 0. From invariance with respect to the field 
V (1) - 0. (1.10) is obtained for oln. (the field D generates a parallel translation) with 
respect to the fields v (I) - (z - t, z - v) a - (. - ~,o)(z - y)and u (ZJ = (Z - t, (I) b - (r - t,b) ,a, where b A a, 

r--y andalz- Y, (1.11) and (1.12) are obtained (the fieldsv generate rotation aboutthepoint .r ) 
and (1.13) is obtainedwithrespecttothe field F(Z)= L --r(the fieldcgenerateshomothetyrelativetoa 

To prove relationships (1.15), (1.16), (1.19), we note that from the similarity of the 
triangles GXY and GX,Yi it follows that &i= It ~-2nR-2"d~, Izi -yi I= 11 -y IR*.jtI-'ly I-1. Con- 
sequently, (1.16) and (1.19) follow from (1.15) without difficulty. To prove (1.15) it is 
sufficient to prove that if one acts on the right side with the operator A,we obtain a & 
function at the point y in the domain. But 

a.nd Supp~ph) 1zi!!cS: if Suppcp ~5, consequently, the last integral is Jr~~~q~(r~~)~~~/~= F(Z). 
We note that the component with the 6-function in (1.19) is obtained from the first term 

in the asymptotic form of the function e, taking the non-linearity of the substitution p(y,#S),-, 
p (#i,&Si) into account. Formula (1.17) is obtained because of the covariance of (1.1) relative 
to the vector field :u(t) = 2 (z - o, a)(r -s) - (8 - =)*a, which generates the composition of an inversion 
with reflection. 

5. To prove (1.18) we note that for w(t)- w(y) it simplifies to 

+ E, (=,, q) = f f dzm Me@, =)e(+ v) 

In this form it follows directly from (1.6) since g and e are proportional. 
In the general case a combination of shifts, rotations, and extensions cp, can be selected 

such that 'Pi (2) = + F~ (v) = uI. 
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The vector field corresponding to q has the form 

where a# 0, al 

w (r) n, + (w (Y) ny - w (2) 4, Y - 2) I = - VI-’ (Ii - 4 + 
@ (I4 ny - w (4 %, 4 1 a I-’ a 

z-y. Since A is only multiplied by a constant for the transformation 'p then 

%,S (cpr (z), 9f (Y)) = exp (-2 (W(Y) n, - W(Z)%, 

Y - 2)15- I/ I+ t + 0 (0) 65 b Yl 
The condition w(z)= w(Y) = 0 is satisfied for the family of domains cp-tSI, consequently 

(1.18) follows from the deduced transformation formulas for e. 
Formula (1.20) is derived in the same way as (1.4) , and (1.22) in the same way as (1.6). 

6. The function E(z, y) is known for the domain S in the form of ahalf-plane and a 
circle. For the half-plane /7/ 

E (2, y) = n-1 )z - y 1-1 p (2, aspp (y, as)'/~ 

e(2,y)=n-*Iz-yyI-*p(y,as)'l~ 

The asymptotic formula for c(z,y) as Y-B 8s is easily verified. Moreover, e (2, Y) = 
z-2 1 t - y 1-z. Hence, we obtain the following formula for a circular domain of radius R 

e (2, y) = JL+ I I - y 1 -2 is (2R - s)P (2R)-‘1: (6.1) 
derived by another method in /6/. Here s = p(y,as). In addition 

E (5, y) = ne2 1 z - y I-* - (2xR)-’ 6, (z) (6.2) 

We will calculate the stress intensity factor for an elliptical crack under constant 
load to a first approximation. The second component in (1.22) vanishes in this case. For a 

circular crack we obtain K (1,~) = V%,'x for (1.21) and (6.1). 
For w(z) = - sin* cc, where p is tie angular coordinate of the point z on the circle, the 

circle will be deformed intc an ellipsewith a = R, b = R-t. we introduce the standard angular 
coordinate /? on the ellipse according to the rule r1 = a cos /3, .z2 = bsin b. In this case fi (z,)= 

9 (4 -I- 0 (f). Since A'(i,z) is independent of I for 1= 0, the derivatives of N with respect 
to t zre in agreement for fi =conzt and cp = const . After calculations, we obtain 

From the expressions with such a derivative and with the necessary value for a=b we 
select an expression symmetric in a and b (such a selection will certainly influence the 
magnitude of the remainder term!. The most natural formula is the following 

N,l,(1, ~)=~r~~~bcos2~+asin2~/~+O((a-b)2a"~) (6.3) 

This formula is in complete agreement with the exact formula presented in /8/, say (p 
is the standard coordinate on the eilipse mentioned above! 

The magnitude of the remainder term in (6.3) can be demonstrated as follows: if as is 
assumed in (1.221, qt is understood to be the angle between the major semi-axis andthe direction 
from the centre to the point I, then (6.3) yields identical relative errors for rp= 0 and 
9 = n/2, i.e. , at the vertices of the ellipse (therefore, it yields the correct ratio between 
the magnitudes of the intens ity factors at these points!, where the remainder term is less than 
9% at the vertices for b/a= 0.5 , about 27% for b/a=0.3, less than 2% at a point with coordinate 
l+ = x/4 for bla=O.S, and 4.5% for blo=0.3. 

In conclusion we note that it follows from (1.18) and (6.2) that for any domain S as Z-Y 

E (I, I/) = n-*ir- #I-‘- (2X)-'k,al(y)T 0 (1) 

where k, is the curvature of aS at the point 5. 

The author is grateful to R.V. Gol'dshtein for suggesting the problem, for supervizing 
the research, and for assistance in writing the paper. 
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D~lE~rNAT~ON OF THE AVERAGE CHA~CTER~STICS OF ELASTIC F~E~ORKS* 

A.G. KOLPAKOV 

A method is proposed for the approximate calculation of the average 
elastic characteristics of fine-celled framework structures vf periodic 
configuration. The method is based on apprvximation of the "cell problem" 
of the theory of averaging /l-4/by problems on the deformation of 
appropriate structuresof beam, shell, etc., types. It is shown that the 
approximate values obtainable for the average characteristics and the 
solution of their appropriate problems are distinguished from the exact 
solutions by a quantity determined only by the error of the model being 
used. Exsmples are considered, namely, beam and box frameworks, and the 
construction of a framework with negative Poisson's ratios. 

Methods for the average description of bodies containing a large 
number of fine vacancies /l, 2/ enable the structure of pervdic configuration 
to be replaced by the consideration of continuous bodies similar in 
mechanical behaviour but with so-called average characteristics. The 
problem of finding the average characteristics is reduced in /2/ to the 
so-called cell problem of elasticity theory whose solution is quite 
difficult. At the same time, the solution of the cell problem in framework 
structures whose periodic element is a beam- or shell-type structure can be 
obtained by approximate methods to any accuracy, which is governed merely 
by the selection of the model. 

An elastic structure of periodic configuration with perodicitiyy cell (PC) in the form 
of a parallelepiped P, = EP~ = {EX : x E P,) is considered, where PI x= {x E R”: -~,/2 Q z, Q &Z, 
i = 1, . . ., n) (n = 2,s) is a rectangular parallelepiped with a characteristic length of the 
sides equal to one (pl --If. The elastic material does not occupy the whole PC P, but only a 
partK,,which can be represented in the form K, = ER%. Under the condition that the 
characteristic (absolute or relative) PC dimension E-+ 0, production of the average is 
possible /2/. To determine the average elastic constants {i& of a medium formed on the basis 
of the PC PL thepart Kr occupied by a material with the elastic constants {ailk,) Should 
minimize the functional /2/ 

in the set of functions {H,'(p,))" under the additional conditions 

s u(x)dx=O (2) 
F-1 

u- 'k(r&+ss%)E El (31 

Here and henceforth, n, is a class of functions periodic in P,(e=,t$ are basis unit 
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